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Abstract. We consider the block elimination problem ( il ) = ( _OC ), where,
2

given a matrix A € R™** A;; € R¥** we try to find a matrix C' with CTC = AT A
and an orthogonal matrix ¢ that eliminates As. Sun and Bischof recently showed that
any orthogonal matrix can be represented in the so-called basis-kernel representation ¢ =
Q(Y,S) = I — YSTT. Applying this framework to the block elimination problem, we
show that there is considerable freedom in solving the block elimination problem and
that, depending on A and C, we can find Y € R™*" S € R"*", where r is between
rank(As) and k, to solve the block elimination problem. We then introduce the canonical

basis ¥ = AlA—Z ¢ ) and the canonical kernel S = (41 + C)1C~7T, which can be
determined easily once C' has been computed, and relate this view to previously suggested
approaches for computing block orthogonal matrices. We also show that the condition of
S has a fundamental impact on the numerical stability with which ) can be computed and
prove that the well-known compact WY representation approach, employed, for example,
in LAPACK, leads to a well-conditioned kernel. Lastly, we discuss the computational
promise of the canonical basis and kernel, in particular in the sparse setting, and suggest
pre- and postconditioning strategies to ensure that S can be computed reliably and is
wellconditioned.
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1 Introduction

Orthogonal transformations are a well-known tool in numerical linear
algebra and are used extensively in decompositions such as the QR factor-
ization, tridiagonalization, bidiagonalization, Hessenberg reduction, or the
eigenvalue or singular value decomposition of a matrix (see, for example, [9,
15]).

For dense matrices, orthogonal matrices are most commonly composed
via Householder reflectors, which are orthogonal matrices of the form

H=Hv)=1-pvv", Bolop = 25. (1)

The condition on the Householder vector v and the scaling factor 4 in (1)
covers all choices for v and [ that result in an orthogonal matrix H. In
particular, it includes the degenerate case 3 = 0, where H is the identity
matrix /. Note that the application of H to a vector x amounts to a reflection
of x with respect to the hyperplane R(v)*, the orthogonal complement of
the range of v. Computationally, the application of H (or H') to a matrix
B involves a matrix-vector product and a rank-one update.

On modern machines with memory hierarchies and, in particular, paral-
lel machines with distributed memories, matrix-matrix operations, especially
matrix-matrix multiply [7,8], significantly outperform matrix-vector opera-
tions. As a result, there has been considerable interest in so-called block
Householder transformations, which express a product

Q= Hy--- Hy

of several Householder matrices (acting in R™, say) in a form that allows for
the use of matrix-matrix kernels in the application of (). An example is the
WY representation [4]

Q=1+WYy", (2)

where W and Y are m x k matrices and Y is composed of the Householder
vectors of H;. Mathematically equivalent is the compact WY representa-
tion [14]

Q=1-YSY" (3)

where S is a k-by-k triangular matrix. We see that the compact WY rep-
resentation requires only O(k*) workspace for the matrix S, compared with



the WY representation’s O(mk) workspace for W. This reduction in mem-
ory requirement may be significant, since typically m > k. Block orthogonal
transformations based on the compact WY form have, for example, been
incorporated into the LAPACK library [1].

Such blocking approaches are particular solutions to the orthogonal block
elimination problem:

Ay

(GGiven a matrix A = ( A,

), Ae R A € RFY m > k.
(4)

Find an orthogonal matrix ¢) such that QA = ( 0

) for some

matrix C € RF*E,

The canonical elimination problem is formulated in terms of —C' for nota-
tional convenience, as will become evident later on. We call the matrix C
the image of A under (). The orthogonality of () implies that ' must satisty
what Schreiber and Parlett [13] called the isometry property,

cTc = ATA. (5)

The Cholesky factor of AT A or the square root of AT A, for example, satisfies
this condition. In the former case, €' is triangular; in the latter case, it is
symmetric.

The usual block Householder approach (see, for example, [9, pp. 211-
213]), employed, for example, in LAPACK, to solve the block elimination
problem (4) essentially consists of two parts. First, compute an unblocked
QR factorization of A to generate k Householder transformations. Second,
accumulate a compact WY representation [9, pp. 211-213] for block updates.
This approach results in a triangular image C.

Recently, Sun and Bischof [16] showed that, far from being just a conve-
nient way of formulating products of Householder matrices, any orthogonal
matrix can be expressed in the form (3), where S need not necessarily be
triangular. They called this form the basis-kernel representation of (), moti-
vated by the fact that the basis Y displays the active subspace R(Y'), that is,
the subspace where the transformation determined by () acts in a nontriv-
ial fashion, whereas the kernel S determines how the the active subspace is
transformed. Among other results, the paper [16] showed the following:



Given an arbitrary basis-kernel representation of (), one can construc-
tively derive a reqular basis-kernel representation, namely, one in which
both Y and S have full rank. Under the assumption that Y has full
rank, the dimension of R(Y') is called the degree of Q.

An orthogonal matrix of degree k is sufficient to solve the elimination
problem (4).

Given an arbitrary basis-kernel representation of (), one can construc-
tively derive a representation with a triangular kernel. However, even
regular basis-kernel representations with triangular kernels are not
unique.

The orthogonality conditions
SYtyst =54 571 (6)

or
STYTy S =54 571 (7)
are sufficient conditions for the orthogonality of Q(Y,.5).

Any orthogonal matrix () of degree k can be expressed as the product
of exactly k nontrivial Householder reflectors, and if Q = [ — Y SY7T,
with triangular S, then Q = H, - - Hy, where H; = I—s;Y (:,2)Y(:,2)T.

If QZ =1 - KSZKT, then

_ T
Q1(Y1, 51)Q2(Y2, S3) = I — (11, Y3) ( Sy Sl(lngz)Sz ) (1. ¥)".

(8)

Hence, without loss of generality, we restrict orthogonal matrices to the

Q=0Q(Y,S)=1=YSY"

and require that any @) solving the orthogonal block elimination problem (4)
be of degree not more than k. Note that in the particular case k& = 1 the

orthogonal matrix to be determined is a Householder matrix.
In this paper, we investigate the orthogonal block elimination problem
employing the framework of the basis-kernel representation in our study. In
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the next section, we show that, for given C', there is a unique orthogonal
Al + C
Az
block elimination problem. We then introduce in Section 3 the so-called
A1A+ ¢ ) and the canonical kernel S = (Al—I—C)TC_T
2

and show that they provide a representation of the unique minimum-degree

matrix with minimum degree, equal to rank , that solves the

canonical basis Y =

orthogonal transformation that solves the block elimination problem for a
given image of A under (). In Section 4 we consider a transformed block
elimination problem where A has orthonormal columns and use it to prove
that the minimum degree achievable for () over all choices of C' is equal to
the rank of A,. We also relate our framework to Schreiber and Parlett’s
block reflectors and the compact WY accumulation procedure. In Section 5
we show that the conditioning of the kernel S and the scaling of Y’s columns
has a profound effect on the numerical accuracy with which an orthogonal
matrix can be computed. We also show that, using the conventional choice
for the computation of Householder vectors, the compact WY accumulation
procedure results in very well-conditioned kernels. In Section 6 we discuss
the computational advantages of the canonical basis and kernel with respect
to the preservation of data locality and exploitation of sparsity, and suggest
conditioning approaches to ensure that basis and kernel can be computed
accurately. Lastly, we summarize our results.

2 Minimum-Degree Transformations

Suppose, for m x k matrices A and B, that () is an orthogonal matrix
such that QA = B. Let Q(Y,S) = I — YSYT be a regular basis-kernel
representation of Q. Then A — B =Y SYT, and the basis Y must satisfy the
inclusion property

A—BCR(Y). 9)

The rank of Y, and hence the degree of (), can therefore be no less than
rank(A — B). We can in fact prove the following theorem.

Theorem 1 Let A and B be m X k such that QA = B for some orthogonal
matric Q). Let r = rank(A — B). Then there exists a unique orthogonal
matriz Qi of degree r such that Q) = QninQnun and QinA = B.



Proof. Let Q(Y,5) = I —YSY? be a regular basis-kernel representation of
Q. Then, A— B=YSY"TA and

rank(YTA) =rank(A — B) =:r.

Now consider the case that the degree of () is greater than r; otherwise
Qmin = Q and Qpuy = I. Let YTA = U( AO4 ) be a QR-factorization
of YTA, with M € R"™*. Then Q(Y,S) = Q(Y,S), where Y = YU and
S = UTSU. Partitioning Y = [V}, Y3], where Y] is m x r, we have Yl A = 0.
The proof of Theorem 5 in [16] showed that there exist a lower triangular
matrix L and an upper triangular matrix R such that 5 :NLRLT. Thus,
QY,S) =Q(Y,R) with Y = Y L. If we partition Y = (Y1, Y3) in the same
Rt Rio

0 R, conformingly, Equation (8)

fashion as Y and partition R = (

implies i i
Q = Q(YhRn)Q(YzaRzz)
and Y, A = 0. With

Qmin = Q(EN/I7R11)7 a‘nd Qnull = Q(1~/27R22)7

we then have
Q = QminQnull and B = sznA7

as claimed.

Now assume there are two orthogonal matrices (J; and ()5 of degree r that
satisfy Q;A = B, and let Q; = [ —Y;STYT be a regular basis-kernel represen-
tation with Y; € R™*", S; € R™*", and rank(Y') = rank(S) = r. Let X be an
k x r matrix of rank r such that Y,"AX = I,,. Then, Y1.5; = ¥55,(V,} AX)
and, since SQ(YQTAX) € R™ has full rank, Y, = Y1 F' for a nonsingular
matrix F'. Since Y] is of full rank, we have S; = FSy(FTY,'AX) = BS,B*,
which implies Q2 = (4. [

From the proof of Theorem 1 and the fact that A and B have symmetrical
positions (QA = B implies QT B = A), we can deduce the following facts.

Corollary 2 Let QA = B, where Q = I — Y SYT is a reqular basis-kernel

representation of ().



1. The following statements are equivalent:

e Q(Y,S) is of minimum degree.
e R(Y)=R(A-B).
o YT A is of full rank in rows.

o YT B is of full rank in rows.
2. If Q(Y,S) is not of minimum degree, then it can be factored as

Q(Yv S) = Ql(Yh 51) Q2(Y27 52) )

where

R(Y1) = R(A — B), and Q1(Y1,S1)A =B

and

R(Y;) € R(A)L, or R(Y) € R(B)*.

In our study of the block elimination problem (4), we consider the partic-

—C

ular case B = L where (' is a k X k matrix that satisfies the isometry
condition (5). Once C is determined, we know that the minimum degree
. C . . A
for a solution to the block elimination problem is the rank of 1A+ ¢
2

Note that the minimum degree discussed in Theorem 1 depends on the cho-

sen image C'. In particular, if we can choose C' such that ( A1A+ ¢ ) does
2

have a rank lower than k, we may be able to arrive at a more economical
representation of (), in the sense that the computational cost of applying ()
in the basis-kernel form is directly proportional to the number of columns of

Y.

3 The Canonical Basis and Kernel

Aq
Az
let C' by a k x k matrix that satisfies the isometry condition with A. By
Theorem 1, there exists an orthogonal matrix () of degree equal to the rank

Let A = be an m x k (m > k) matrix where Ay is k& x k, and
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Az

that a particular basis Y and kernel S representing @ (i.e., @ = Q(Y,5))

can be derived directly from A and €, without any need for a column-by-

column approach as is, for example, employed in the WY approaches. In this

section, we assume that A is of full rank. The rank-deficient case is addressed
in Section 6.

We have already established that Y must satisfy the inclusion property (9)

of ( At C ) that solves the block elimination problem (4). We now show

R(l A cry),
Az
Also note that A = Q(Y, S)T( _0 ) implies that Y should satisfy the
elimination condition
Y =vst4, +0)tc, (10)

which suggests (and if Y is of full rank, actually implies)
stAa,+O)te=1.
In fact, we can prove the following theorem.

Theorem 3 Let A € R™ %, m > k, be of full rank, and let C € RF** satisfy
the isometry condition with A. Then Q(Y,5), defined by

()4 e

S=(A+C)CT, (12)

and

solves the block elimination problem Q(Y,S)A =

_0 . Furthermore, Y
and S provide a basis-kernel representation for the unique orthogonal matriz
of minimum degree that solves the block elimination problem.

Proof. It can be verified directly that Y and S as defined above satisty the
orthogonality condition (6), and therefore Q(Y, S) = I—Y SYT is orthogonal.

8



If (A1 +C) is nonsingular, it is easy to check that ¥ and S solve the block
elimination problem.

Now consider the case where A; + C has rank r < k. From the first &
rows of the elimination condition (10), we have

CT( A+ C) = CT(A + O)ST (A + O)TC.

Using a singular value decomposition, we have C~1(A; + C) = VXV for a
nonsingular matrix ¥ € R™*" and orthonormal matrices V7, and Vi. Thus,

ViXVe = VisVa STveevl.

We therefore know that there exists a nonsingular r x r matrix B such that
CT(A;+C) = VBV, Since (A +C)IC~T = Vi, B~'V}}, it is easy to check
that Y as in (11) and S as in (12) together satisfy the elimination condition
(10).

Independent of the regularity of A; 4+ €', we have by construction

wm=r 1+ (0)).

and so, according to Corollary 2, Q(Y,S) has minimum degree. [

We call (11) and (12) the “canonical base” and the “canonical kernel”,
respectively. Note that, for & = 1, these formulae are exactly those defining
for a Householder transformation. It is also worth pointing out that, for a
given C, Y and S need not be of full rank, even though Q(Y,S) employing
the canonical base and kernel is the unique orthogonal transformation of
minimum degree solving the block elimination problem.

Corollary 4 Let Y and S be defined as in Theorem 3. Then, Y and S are
of full rank if and only if (A1 + C) is nonsingular.

Proof. The elimination condition (10) implies that if ¥ is of full rank,
then the matrix product ST(A; + C)TC must be nonsingular. This, in turn,
implies the nonsingularity of A; 4+ C and S. On the other hand, since A; +C
is the first k-by-k submatrix of Y, the nonsingularity of A; + C implies the
independence of Y’s columns. [

Note that, for a particular chosen image C'; A5 plays no role in determin-
ing the minimum degree required to solve the block elimination problem.

9



4 Orthogonal Factors of Images

In the preceding sections we assumed that the image C' of A under @) had
been fixed a priori, and we showed how one could easily derive the canonical
basis and kernel that solved the block elimination problem for that particular
choice of C'. In this section, we consider the impact of the choice of C.

Assume again that A is of full rank. Let @ and @ be two orthogonal
transformations that both eliminate A5, namely,

QA:(_OC), and @A:(_OC). (13)

Since both (' and C satisfy the isometry condition with A, we have CT(C =
C"C and hence C = UC for some k x k orthogonal matrix U.

Let G = G be the first k columns of Q. Then A = —GC and

Gy
R(G) = R(A). Equation (13) implies

w-() eo=(V)w
@A:(_gc), @G:(_OU). (15)

That is, if we fix an orthonormal basis GG of R(A) and hence the repre-
sentation of A, namely —C', with respect to the basis, the block elimination

and

problem (4) is mathematically equivalent to the following problem, which we
call the transformed block elimination problem:

G
Gy
GIGy = I, and an orthogonal matrix U, find an orthogonal
matrix () = [ — Y SY?T of degree no more than & such that

G\ [ U
o(@)-(7)
For a solution Q(Y,S) of this transformed problem, we have

arsia=e( 4 )= (707). o)

10

Given a matrix ¢ = ( ) e R Gy € R GTGy +

(16)




Note the strong resemblance to the Householder point elimination problem,
H(v,7)a = ( —7llall2 ) 7
0
where v = +1. Partitoning ¢ = ( : ), a € R, we choose v in LAPACK as
2

Y= { sgn(ay), if az #0, (18)

—sgn(ay ), otherwise.

4.1 Degree Choices

Applying the results in Section 3, we know that, given U,

Gy

provide a representation Q(Y, ) for the unique orthogonal matrix ¢ of min-
imum degree that solves the problem (16) for that particular choice of U.
We also know from Corollary 2 that r := rank(YTG) = rank(GiFU + 1) is
the degree of ), with the inclusion property (9) implying r < k.

The following lemma shows that there is always a kx k matrix U such that
(i1 4+ U is nonsingular. That is, for this particular choice of U the minimum
degree for the related elimination problem is k.

Lemma 5 Let Gy = UR; be a QR decomposition of G scaled such that R,
has nonnegative diagonal elements. Then the matriz G1 + U ts nonsingular,
and the canonical kernel S = (UTGy + )™ is upper triangular.

Proof: Since R has nonnegative diagonal elements, G4y + U = U(R+ I)C is

nonsingular. The triangularity of S follows easily from the choice of U. =

This fact was intuitively expected, as the triangularization of a matrix
with k£ columns usually requires k& Householder transformations. We now
show how the rank of (G5 relates to the lowest degree we can achieve through
proper choice of U.

11



Lemma 6 For any orthogonal factor U,

rank«;1+-0)::rank((‘;1*'U)y

Gy

Proof. The claim holds if Gy 4+ U is nonsingular. We consider the case that
G 4 U is singular. From the proof of Lemma 2 in [16], we have

for some orthogonal matrix V, and a nonsingular matrix S of order, say, r.

Thus, B
Gﬂ/S:UVS(S_] _]).

The CS decomposition of (¢ (see, for example, [9]) then implies that the last
k — r columns of G5V, are zeros exactly when the last & — r columns of
(G1 + U)V; are zero and its first r columns are of full rank. That is,

rmu(aéU)mpqmu@me@

Theorem 7 There exists an orthogonal matriz U such that G1+U s singular
if and only if Gy is rank deficient. Moreover,

rank(Gy) = min{rank(Gy + U) | U is orthogonal }.

Proof. Suppose Gy + U is singular for some orthogonal matrix /. The proof
of Lemma 6 shows that (3 is rank deficient. Now assume r = rank(G2) < k.
We have from Lemma 6 that for any orthogonal factor U,

rank(Gh + U) = rank(( G1G+ v )) > rank(Gy).
2

By the CS decomposition theory, there are three orthogonal matrices V4, V3,
and V. such that

I 0
&:m( &)WRMM%:%( &)WR

12



where ¥; are nonsingular diagonal matrices and Y2 4+Y2 = [. Let U = -V} V.

Then G4 + U is singular and
rank(Gy + U) = rank((G] + UT,G})) = rank(Gy).
|

Theorem 7 reveals that the minimum degree for orthogonal transforma-
tions that solve the block elimination problem depends on the rank of G,
or Ay, the block to eliminate. Note the difference between the lowest degree
of orthogonal transformations with a given image U (Theorem 1) and the
minimum degree of orthogonal transformations for eliminating (G5 among all
possible choices in U (Theorem 7). That is, depending on the choice of the
image of A, the degree of the orthogonal matrix for the block elimination
problem for a full rank matrix A with & columns may be anywhere between

rank(Ay) and k.

4.2 Block Reflectors

Schreiber and Parlett [13] developed a theory on block reflectors, which
are symmetric orthogonal matrices

Q=I-YTY", QTQ =1, T=TY Y eR"" (19)

A particular example is the situation where Y has orthonormal columns and
T = 2I. From the discussion in preceding sections, we know that all block
orthogonal transformations — hence, in particular, symmetric ones — solving
the block elimination problem (17) can be characterized as special choices of
the orthogonal factor U.

Example 8 (Block Reflectors). Suppose Gy = ViXV.! is a SVD of G;.
Let U = ViDV.Y for some (real) diagonal matriz D such that |D| = I. Then

1. Gy = UM is a polar decomposition of Gy [9, p. 148], where M = V,X. DVt
s symmetric.

2.8 =G+ U)TU =+ M)TV =V.(I + ZD)VTT is symmeltric.

3. If, in addition, D is chosen such that [ + XD is positive definite (which
is always possible), then S is positive definite, and Q@ = Q(Y,S) can be
represented in the special form of

Q=1-YY", with Y =Y5'2

13



Example 8 shows that many symmetric orthogonal transformations solve
the block elimination problem. They result in different images of A, and the
condition of their kernels differs. The diagonal matrix D in Example 8 can
be chosen to minimize, say, the two-norm condition number of 5, as

o + d;|

msuchthataj—l—dj#(),lgigk,l§j§k}.
gy J

Ka(S) = maX{

For the case k = 1, U = d = 4+1 and S = (1 &£ ¢1d)™'. The LAPACK
selection d = sign(gy) (see (18)) for a nontrivial Householder matrix results
in the smaller scaling factor S among the two choices. Parlett [12] showed,
however, that the alternate can be computed in an equally stable fashion.

In their computational procedures for block reflectors, Schreiber and Par-
lett [13] use Higham’s algorithm [10] to compute the polar decomposition of
(1, and hence implicitly chose D = I. In this case, S = V,(I + X)7'V7T is
positive definite, and S is always extremely wellconditioned, as k9(5) < 2.
The case that the actual block size could be smaller than the number of
columns of A was first mentioned in [13], although the link to the rank of A,
(or (3) was not recognized.

4.3 The Compact WY Representation

The WY approach for generating orthogonal transformations for the block
elimination problem does not require an orthonormal basis of R(A) or of
R(Y). Denote by WY (y1,--+,yx) = [ — Y'SYT the compact WY represen-
tation for the product of Householder transformations as derived from the
conventional QR factorization, where Y = (y1,---,yx) is composed of the
Householder vectors y;, and a null vector denotes a degenerate Householder
matrix (i.e., the identity) resulting from a “skipped” orthogonal transforma-
tion.

Applying the conventional WY approach to the transformed block elim-
ination problem (16), we get a diagonal image U as a result of the orthogo-
nality among G’s columns. The diagonal elements of U are determined one
by one by the rule (18). On the other hand, Corollary 6 in [16] showed that,
given an arbitrary k x k diagonal matrix D, |D| = I, one can determine
a sequence of Householder matrices with corresponding Householder vectors

14



Y1, -, Yk so that
—D
WY (y1,- -, y1)G = ( 0 ) (20)

As it turns out, orthogonal transformations for the block elimination problem
generated with the WY approach have minimum degree.

0
trie D, |D| = 1. Then WY(y1,---,yx) is the minimum-degree transformation
that solves the transformed block elimination problem (16) with U = D.

Theorem 9 Suppose WY(yy, -, yx)G = ( - ) for a real diagonal ma-

Proof. If the Householder matrices determining WY (1, - - -, yx) are all equal
to the identity, then WY (y1,---,yx) = [ is already of the lowest degree. Oth-
erwise, it was shown in [16] that WY (yq,- -+, yx) = Q(Y, S) for a regular basis
V and a nonsingular kernel 5’7 where Y consists of the nonzero Householder
vectors. Since the first nonzero elements of these Householder vectors occur
in different rows, (D, O)Y is of full column rank. The claim in the theorem
then follows from Corollary 2. [

Assume we have fixed the factor €' in A’s image to be upper triangular.
By the uniqueness of minimum degree transformations, we can then deduce
the following fact.

Corollary 10 The class of orthogonal matrices determined by the WY ap-
proach for the block elimination problem (4) with triangular images C is
the same class of minimum-degree orthogonal matrices that solves the trans-
formed block elimination problem (16) with diagonal images U.

Recall that, given a particular ', the canonical basis and kernel also
provide the minimum degree orthogonal transformation for the problem (4).
The WY approach is another way to compute such a block transformation,
choosing Y column by column.

Again, we point out that the minimum-degree orthogonal transformation
associated with a particular image is not necessarily the minimum-degree
transformation possible overall. As an example, consider the matrix

a11 (12
3%2
A= an ay | € R,

pop

15



where «;; € R and 8 # 0. Two nontrivial Householder matrices, and hence
an orthogonal transformation of degree 2, will be required unless (a1 +
||Aeq]l2) (s — a11) = az1(agr — ag2). By Theorem 7, on the other hand,
the lowest degree for the block elimination problem is 1, the rank of A’s

submatrix (f3, 3).

5 The Condition of the Kernel

In the preceding two sections, we have introduced the canonical basis
and kernel for a representation of minimum-degree orthogonal transforma-
tions to the block elimination problem. We have also shown the relation of
the compact WY accumulation procedure with diagonal images. However,
mathematically equivalent representations may have quite different numeri-
cal properties, and we now discuss to what extent the kernel influences the
numerical properties of particular representations of orthogonal matrices.

Theorem 11 LetY be an orthogonal basis of full rank and S be its associated
kernel. Suppose S = S+ AS is a kernel computed from Y. Let () = I —
YSYT. Then

1QTQ — Illr < 4 ST Pl AS]F + 4157 IFIAS|IF)*. (21)

Proof. Since Y is of tull rank, S is nonsingular. Thus, the orthogonality
conditions can be expressed as

Yy = 57t 4 571 (22)
and hence
IYTY || < 2|57,

where the norm is either the Frobenius norm or the 2-norm. Let A(Q) =

Q—Q=YASYT. Then
1QTQ —Illr = [|QTAQ+(AQ)TQ + (AQ)(AQ)|r
< 2IYIEIASF + HIY(AS)TYTY(AS))Y || p
< 2IYTYRAS]F + [[YTY R YTY (][ ASF
< ASTHEASF + 4([STHIFIAS]F)?.

16



Hence, the “orthogonal” matrix () represented by Y and S may in fact
be far from being orthogonal if S is illconditioned, unless AS' is sufficiently
small. However, we are likely to incur a sizable AS when S is illconditioned,
since the equation (22) says that, in essence, S™! is computed from Y, and
hence an inversion of S™! has to be performed somewhere along the way to
obtain S. If S is illconditioned with respect to inversion, then AS could be
quite big [15].

The simplest and best-conditioned kernel is a multiple of the identity
matrix. We know from the orthogonality condition (22) that a nonsingular
symmetric kernel S is 27 if and only if the associated Householder basis Y is
orthonormal. The transformation is then a block reflector with normalized
basis and kernel. Note that even for the orthogonal elimination problem,
where (G is assumed to be orthonormal, we still need to do extra work and
make Y orthonormal again to obtain S = 21. Therefore, achieving a kernel
with unity condition number is computationally too expensive under normal
circumstances. We also note that Example 8 shows that there exist represen-
tations for symmetric orthogonal matrices (or equivalently, block reflectors),
with ill-conditioned kernels.

Theorem 5 in [16] showed that any orthogonal matrix can be represented
with a triangular kernel. As it turns out, the condition of a triangular kernel
is greatly influenced by the scaling of its corresponding basis.

Theorem 12 Let Q = I — Y SY" be a reqular basis-kernel representation of
the orthogonal matriz (), where S is lower triangular. Then,

si = 2/ |lyill3,
and, fori > 7y,
4

[(S™H sl < llyillllysllzs and |sij] < e
1yill2llysll2

(23)
Proof. By the orthogonality condition (22), s; = 2/||y:||3. The bounds on
the elements of S™! then follow from the triangularity of S and the Cauchy-
Schwartz inequality. The strict inequality is due to the independence of Y’s

columns. Similarly, from the formulation (7) we have ||[Y Se;||s = 1/25;; =
2/|ly;llz and |si;| = [(YSe)T(YVS))] < ||V Sed2ll||Y Se;]|2- The strict inequal-
ity is due to the fact that Y5 is of full rank. [
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Similar results to Theorem 13 hold for lower triangular kernels.

The compact WY approach for the QR factorization gives a representa-
tion with triangular kernel and a lower triangular basis. If we adopt the con-
ventional selection rule (18) for Householder vectors, the elementwise bounds
on the kernel and its inverse can be tightened considerably.

Theorem 13 Let WY (y1,---,yx) = [ — YSYT be the WY representation
of orthogonal transformations for the QR factorization, determined by the
selection rule of (18) and the scaling convention

vi()=1if  y #0. (24)
Then,
I <s; <2,
and, fori > 7y,
(STl < V2, and syl <2 . (25)
Furthermore,
1S~ HF <k, and ||S||F<k+1. (26)

Proof. We assume w.l.o.g. that ¥ has no zero columns and that S is lower
triangular. The selection rule (18) makes the first nonzero element of each
Y’s column the “dominant” element and the scaling convention (24) makes it
equal to 1. Keeping in mind that Y’s elements in the strict upper triangular
part are zero, we have for each y;, 1 <3 <k,

eZ»Tyj =0, <y, e]Tyj =1, and 1< |ly]2< V2.

Thus, the 2-norm of y; with the dominant element removed is no greater
than 1, and for i > j, [(S™Y):] = [yfy;] < V2. The bound on ||S7!||F then
follows. Similarly, the elements of Y'.S in the strict upper triangular are zero

and we have
|(Y'Se;)|ls = +/2s;; and e]TYSej = 5j.

It can then be proved easily that the 2-norm of the vector obtained from
(Y'Se;) by zeroing the dominant element e]TYSej is unity. Therefore, for
L > 7,

|5ij| == |(YS€Z)T(YS€])| S 25“ S 2.

18



Furthermore, we have

k k .

) 2
IS < Y isi =3 —r— < k(k + 1),
=1

Theorem 13 points out that orthogonal matrices computed by the WY
approach are numerically benign if their degree is not unreasonably high.
This is the case in practice, with £ typically ranging from 8 to 64.

6 Preconditioning and Postconditioning

The preceding section showed the importance of the condition of the
kernel for the numerical reliability of a block orthogonal transformation. We
also showed that the compact WY accumulation procedure is very reliable.
This reliability comes at a price, however, as one has to process A column by
column, with the jth column of A being touched 25 + 2 times in Householder
updates, norm computation, and scaling. We also note that the computation
of the WY representation for k& Householder vectors of length m takes 2k2(m—
k/3) flops for the WY basis and mk(k + 1) for the WY kernel [9, p. 212].

In this section we discuss other, more block-oriented, ways of achieving
reasonably conditioned basis-kernel representations, and also consider the
issue of sparsity. For now, assume that A is an m x k, m > k, matrix of full

rank, and (' is the Cholesky factor of AT A,

6.1 The Canonical Approach

Once we have computed the Cholesky factor €', the canonical basis
A+ C
=)
is readily available, and the computation of the kernel

S=(A+0)CT

involves only computations on k x k matrices, which is very little work com-
pared with the usual Householder QR factorization algorithm, since typically
k< m.
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The canonical basis can also be much sparser than the block represen-
tation generated by the compact WY procedure, as is shown in Figure 1,
which shows A, the basis Y, computed by the compact WY procedure,
and the canonical basis Y.gnonicai. Fill-in elements are denoted with an “F”.
A has 24 nonzeros and Y, has 55 nonzeros while Y.,,0nicq1 only has 29
nonzeros (i.e., only 5 fill elements). When a matrix Q = [ — Y SY7T is
applied to a m x n matrix B, n > k, the computation of Y7 B is a major
part of the computational expense of forming B — Y S(YTB) and requires
nonz(Y)-n < k-m-n flops, where nonz(Y) is the number of nonzero ele-

ments in Y. Since Q =1- i/canonicalscanonical}/cT =1- waSIUny the

anonical wy?

computation of YwTyB is not only more expensive than that of Y.! . B, but
may also result in more fill-ins when B is sparse, further increasing the cost

of the update.

Particular cases of the canonical basis and kernel occurred in previous
works on the subject of block orthogonal factorizations. Using our frame-
work, they can all be related to particular choices of the image U in the
transformed problem (16).

For example, we proved in Lemma 5 that there is always a factor U
such that the canonical kernel S is nonsingular, and hence Y is of full rank.
Dietrich [6] used such a choice in his work to avoid the case of a rank-deficient
kernel.

Kaufman [11] used essentially diagonal orthogonal factors. Her algorithm
assumed that Ay, the top & x k submatrix of A, is upper triangular, or applied
an initial QR factorization to Ay first. Kaufman was also the first one to
implicitly exploit the the sparsity of A preserved in the canonical basis and
to observe the stability problems arising from ill-conditioned kernels.

Except for Schreiber and Parlett [13], all previous approaches tried to
avoid producing a singular kernel. Our theory shows that, instead of being
a problem, the singularity of a kernel can be taken advantage of, as it allows
the generation of an orthogonal transformation of lower degree. We also
showed constructively under what conditions such a kernel existed.

In this section we now present some ideas on how to cheaply solve the
block elimination problem (4) while ensuring numerical reliability.
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< < < X X <
/

Figure 1: An example of the WY basis versus the canonical basis
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6.2 Preconditioning

The canonical basis requires an admissible image of A, that is, one that
satisfies the isometry condition (5). The Cholesky factor of AT A is an obvious
choice. If A has orthonormal columns, the Cholesky factor is I, the identity.
Therefore, the first step of the algorithms in [13] is to orthonormalize A’s
columns, for example, with the conventional Householder QR factorization.
The conventional Householder QR procedure is also considered a reliable
procedure to compute Cholesky factors. However, in either case we are es-
sentially already solving the block elimination problem, so orthonormalizing
A’s columns in general is too expensive.

Computing the Cholesky ATA = CTC of AT A takes mk(k + 1) flops for
one triangular half of the matrix-matrix product AT A and £%/3 flops for the
Cholesky factorization. Note that this is nearly half the effort required for
the WY accumulation (most of the work is in a matrix-matrix multiplication)
and that the computational cost for a sparse A could even be less. We now
discuss what we call “preconditioning,” that is, strategies for transforming
the problem so we can safely compute the Cholesky factor.

Problems in computing the Cholesky factorization arise when some of A’s
columns are only weakly independent of the others. This case can be dealt
with through a rank-revealing Cholesky factorization. As with rank-revealing
QR factorizations [5,2,3], there is a permutation matrix P such that

PrATAYP=C"C, C= ( Cu g” ) : (27)
22
where C1; € R™*" is wellconditioned, r is the numerical rank of A, and ||Cas]|2
is “small.”

If Uy is numerically negligible, then the last & — r columns of AP can
be considered linearly dependent on the first r ones, and we need only to
determine an orthogonal matrix to solve the block elimination problem for
the first r columns of AP. If Ry; is not numerically negligible, let R be a
matrix such that C'R is wellconditioned, for example,

- (1
k= .
( B’%z)
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Now, working on the matrix APR instead of A, we obtain

QY. S)APR = ( _gé )

for some orthogonal matrix U, and so

QY,S)AP = ( _Ugé_l )

Note that the Cholesky factor C of AP]%,

& ( Ci Ciahl, )
] Y

is wellconditioned for the canonical basis of AP]%, which differs from A in
only & — r columns.

Note that a poor scaling in A’s columns can easily result in a large con-
dition number for ATA.  In this case, the condition of A can easily be
improved by scaling A’s columns; that is, we choose R to be diagonal. This
is probably sufficient in most cases, and certainly preferable in the sparse
setting. Also note that, from the preconditioning point of view, computing
an orthonormal basis of A can be considered the ultimate preconditioning
step, as it results in C =1

6.3 Postconditioning

As we already noted in the context of block reflectors, a well-conditioned
A does not necessarily result in a well-conditioned kernel, which is needed
for numerical stability.

So now assume that we have determined a picture C' of A that results in
an ill-conditioned kernel, and hence an numerically rank-deficient basis. As
was shown in the proof of Lemma 2 in [16], we can derive a factorization S =
FSFT of S so that S is wellconditioned, and then use the conditioned basis-
kernel representation Q(Y,.5) = Q(Y'F, S) In fact, F' can be composed of a
permutation matrix and a triangular matrix similar to the preconditioning
matrix £. In general, we expect such a postconditioning matrix to drop
and/or change only a small number of Y’s columns.  Again, the extreme
case of postconditioning is the orthonormalization of Y.
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Finally, note that both pre- and postconditioning involve only k£ x k£ ma-
trices. In typical applications of block orthogonal transformations, k ranges
from 4 to 32. Thus the matrices involved in conditioning are small. We have
also seen from the example in Figure 1 that the canonical basis is promising
for sparse orthogonal factorizations. With proper conditioning techniques,
one should be able to preserve most of this desirable structure except in rare
circumstances.

7 Conclusions
In this paper, we investigated the block elimination problem
—C
=)
employing the basis-kernel representation

Q=Q,S)=I1-YSy"

as our main tool.
We showed that, given a particular fixed picture C', there is a unique

Az
that solves the block elimination problem. We introduced the canonical basis
and kernel

orthogonal transformation of minimum degree, equal to rank( A+ ))

Ay

as a particularly convenient way for computing this transformation.

Y:(&+0)am5:@%+mm4

Considering a transformed problem where A has orthogonal columns, we
then proved that, for all admissible choices of ', the minimum degree that
is possible is rank(A;). We showed that symmetric orthogonal matrices (i.e.,
block reflectors) and the compact WY representation can be considered as
special cases in our general framework.

We also illustrated that the condition of the kernel S plays an impor-
tant role for the numerical reliability with which Q(Y,S) can be applied.
We showed that an ill-scaled basis almost certainly results in a badly con-
ditioned kernel and that the kernel computed by the compact WY accumu-
lation procedure with the usual sign choice for Householder vectors is very
wellconditioned.

24



Once the Cholesky factor of AT A is known, the canonical basis and kernel
are much easier to compute than the compact WY accumulation strategy in
the usual case where £ < m. We also gave an example showing that the
canonical basis and kernel hold great promise for sparse computations, since
the sparsity structure of A, is preserved in the canonical basis. We then
suggested preconditioning strategies to make sure that the Cholesky factor
of ATA can be computed reliably, and postconditioning strategies to make
sure that the resulting kernel is wellconditioned.

In particular for sparse problems, the canonical basis and kernel hold great
promise for more efficient approaches to compute sparse orthogonal factor-
izations. We believe that simple column scaling strategies are sufficient as
pre- and postconditioning strategies in most cases and that the investigation
of pre- and postconditioning strategies for sparse matrices is a very promis-
ing avenue to pursue. Even for dense problems, we believe this approach
to be worth pursuing, as the canonical basis and kernel can be computed
faster than the compact WY accumulation procedure, and in a much more
block-oriented fashion, which should be advantageous in cache-based sys-
tems or parallel processors. Lastly, we point out that there seems significant
potential in studying how other choices for the image of A under () can re-
sult in lower-rank and hence computationally more advantageous orthogonal
transformations.
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